
© Logicworks. All rights reserved.

The Art of Auto Scaling:
Learn the Latest Best Practices
and Avoid Common Mistakes
With Sample Architecture Diagrams and CloudFormation Templates

1© Logicworks. All rights reserved.

Introduction
Auto Scaling has long been a major selling point of cloud
computing. But like most popularized technology features, it has
accumulated its fair share of misconceptions. These common
mistakes tend to get in the way of constructive conversations
about cloud architecture, and usually mislead IT leaders into
believing that Auto Scaling is simple, quick to set up, and always
ensures 100% uptime.

IaaS platforms make Auto Scaling possible, usually in a way that
is much more straightforward than scaling up in a datacenter.
But if you visit Amazon Web Services (AWS) and spin up an
instance, you will quickly discover that public cloud does not
“come with” Auto Scaling.

Over the last decade, Logicworks has been continually refining
their Auto-Scaling solutions, helping hundreds of customers on
AWS, from startups to large enterprises leverage Auto Scaling to
enable growth, high availability, and resilience. We have
consolidated our top tips into this eBook to provide you with a
blueprint for designing a resilient and scalable system while also
avoiding those pesky misconceptions and mistakes.

Table of Contents

Part 1: Foundations of Auto Scaling
• Key Terms
• Why Auto Scaling?
• Real-Life Example of Auto Scaling

Part 2: The Auto Scaling Process

Part 3: Complexities of Auto Scaling
• Instance Bootstrapping
• Windows
• Spiky Workloads

2© Logicworks. All rights reserved.

Part 1: Foundations
of Auto Scaling
Auto Scaling is a feature of several AWS services that allows
you to automatically add or remove capacity according to
pre-set conditions. Although Auto Scaling is usually associated
with Amazon EC2 instances, you can also use Auto Scaling with
Amazon ECS tasks, Dynamo DB tables, Amazon Aurora replicas,
and more.

Why Auto Scaling?
Scalability. Let your infrastructure grow with your
requirements with dynamic load-based scaling, rather
than over provisioning to meet peak demand.

Self-healing. To improve resiliency, put instances into a
fixed-size Auto Scaling Group. If an instance fails, it is au-
tomatically replaced. The simplest use case is an Auto
Scaling Group has a minimum size of 1 and a max of 1.

Cost savings. Whether you’re using Auto Scaling
Groups for resiliency or scalability, you’re paying for
what you need rather than paying for overprovisioned or
redundant capacity.

Key Terms
Amazon Machine Image (AMI): A template that contains all
the information required to launch an instance.

Launch Template: The template and other information used
to build an instance in an Auto Scaling Group. Usually in the
form of an AMI ID.

User-data: Data that you pass to configure an instance at
or after launch. Either a shell script or cloud-init directives.
There’s a user-data field in Auto Scaling Group launch
configurations for you to copy/paste your shell script.
Usually used to do things like install packages or agents
after instance launch.

Auto Scaling Groups: The logical grouping of identical
instances launched by the same launch configuration with
its corresponding minimum, maximum, and desired number.

Scale-out event: Any event that triggers the launch of one
or more instances to the Auto Scaling group.

Scale-in event: Any event that triggers the termination of
one more instance in the Auto Scaling Group.

Cooldown period: A period you can set after a scaling event
occurs, so that you can wait for the effects of a scale-out or
scale-in to occur before any further events are triggered.

3© Logicworks. All rights reserved.

Example: Simple E-Commerce Website
The basics of Auto Scaling are easiest to see in an example.
Let’s say you have an application and infrastructure with the
following conditions:

• Basic 2-tier web application

• Web: Single Amazon EC2 instance (m5.large) running Nginx in
public subnet

• DB: Single Amazon RDS MySQL database in private subnet

• 10,000 average daily visitors

Now let’s say that during a transaction, you get an Amazon
CloudWatch alarm that your Amazon EC2 instance has maxed out
on CPU. You try to visit your website and get an error. Now you’ve
lost revenue and reputation.

4© Logicworks. All rights reserved.

Option 1: Resize your instance

The traditional response to this failure would be to provision a larger
server in your datacenter or colo facility. Similarly, you could decide
that you’re going to upgrade your m5.large to an m5.xlarge, which
doubles your vCPU capacity. You take a snapshot, build an image,
and relaunch as an m5.xlarge.

Pros:
Easy to implement

Cons:
Expensive: You’re paying twice the cost of an m5.large, 24/7,
that’s $70/mo

Might still not cover peaks: Just because you’ve increased the
size of your instance, doesn’t mean it accounts for all spikes
in traffic. It reduces the likelihood of this happening, but is a
“lazy” solution

Single point of failure: If your instance fails, your entire
application goes down

How can you prevent this from happening in the future?

5© Logicworks. All rights reserved.

Option 2: Run two instances behind a load balancer
In this second option, you can reduce the load on one single
m5.large by running two m5.larges behind a load balancer
(active-active). You can additionally improve resiliency at the
same time by running those two instances across two different
Availability Zones, so that there’s redundancy on the
datacenter level. You can configure your load balancer to direct
equal amounts of traffic to both instances, and perform health
checks so that if one fails, traffic is automatically redirected.

Pros:

Multi-AZ setup + load balancer improves resiliency
Load balancer in public subnet, instances in private subnet
- improves security

Cons:

Expensive: You’re still paying twice the cost of a single
m5.large

Might still not cover peaks

No automatic replacement of instance if one fails: If an
instance fails, all traffic is directed to the other instance,
but the failed instance must be rebooted manually

6© Logicworks. All rights reserved.

Option 3: Auto Scaling

Neither resizing the instance nor running multi-AZ solves the
problem of our spikey simple eCommerce application. Both
solutions reduce the risk that a traffic spike will bring down your
whole application, but they’re both twice our original cost.

Enter Auto Scaling!
Rather than changing anything about our m5.large, we instead
take an image of our existing instance and use that to create an
Auto Scaling Group with a minimum of 1 and a maximum of 2
(or any other max that you feel is appropriate) and the condition
that a scale-out should trigger when CPU utilization reaches 80%
for a period of 5 minutes. Scale-in should trigger when CPU
utilization reaches 40% for a period of 15 minutes.

7© Logicworks. All rights reserved.

When you launch the Auto Scaling Group, how many instances
will it launch?
3 instances, since that’s the minimum desired instance count.

CPU utilization is sustained over 80% for 3 minutes.
What happens?
A scale-out event is triggered. The Auto Scaling Group will add
1 instance for a total of 4 instances.

CPU utilization is still sustained at over 80% for another
2 minutes. What happens?
Nothing. After a scale-out event, we’ve got a cooldown of 5 minutes.
No more scaling event can happen during this cooldown period.

CPU utilization drops down to 30% for 10 minutes.
What happens?
A scale-in event occurs. Instance count drops by 1, for a total of
3 instances.

CPU utilization remains at 30% for 10 minutes. What happens?
Nothing. 3 is the minimum instance count.

Let’s say we’ve set up an Auto Scaling Group with a Simple
Scaling policy (see next page for other Scaling types). You set
it up with a minimum of 3 instances and a maximum of 6
instances, and other settings as seen in the screenshot below:

8© Logicworks. All rights reserved.

2. Choose your Scaling Policy
a. Target tracking scaling, a.k.a dynamic scaling: Change

capacity based on targeting a certain metric, like 70% CPU
utilization. It works like a thermostat to automatically
regulate capacity.

b. Scheduled scaling: Spin up and down resources based on
a set schedule. For example, if you know your users are
online at 9 A.M. every morning and log off at 5 P.M., then
you can scale the Auto Scaling Group for your development
resources beginning at 8:45 A.M. and begin to reduce
capacity at 5:15 P.M..

c. Predictive scaling: Uses previous data to determine future
scaling patterns (machine learning).

AWS has attempted to “wizardize” this process to make it easy
to set up, and to some degree has limited configuration options.

1. Define your Launch Template
Every time you trigger a scale-out event, you need to tell your
Auto Scaling Group what instance to create. You define this in a
Launch Template. A Launch Template allows you to define:

• Amazon Machine Image ID
• Instance type
• Amazon EBS volume type and size
• Tags
• Keys to use for accessing the instance
• Networking - VPC, subnet, and security group

We’ll go into detail about options for configuring Launch
Templates in great detail on page 12.

Part 2: The Auto Scaling Process

9© Logicworks. All rights reserved.

10© Logicworks. All rights reserved.

4. Set up Detailed Amazon
CloudWatch monitoring
Next, you turn on Detailed Amazon CloudWatch monitoring.
This means that rather than performing a health check on your
target group every 5 minutes, you now perform a health check
every 1 minute. This is highly recommended if you do any kind
of Auto Scaling. It’s a checkbox on the Auto Scaling Group
configuration page.

5. Test extensively
Set a conservative scaling policy to start, then track patterns for 2-3
months while refining scaling policies. Again, this work takes time, and
may need refinement.

Try it Out: Auto Scaling Template
A tutorial with a set up very similar to the scenario described above
can be found on next page – just review the documentation, and you’ll
have a simple Auto Scaling environment setup. Try to stop one of the
two instances and see what happens.

 3. Set your thresholds and
other configurations
Depending on what Scaling Policy you’ve chosen, you can now
set which metric and threshold to trigger scale-in and scale-out
events. There is no “recommended” threshold and policy, as this
is highly dependent on a number of factors. This is where the
“art” of Auto Scaling comes into play, and part of the reason why
Auto Scaling isn’t as simple as it seems.

Key Factors in Designing Auto Scaling Thresholds:

• Operating system: For example, if you’re running a Windows
Auto Scaling Group, and each instance takes 10 minutes to boot,
you may want to set a lower threshold for scale-out (like 70%) in
order to give you time for the instance to come up before traffic
spikes further.

• How long your instances take to boot: If you’re running
sophisticated configuration management systems on boot,
then be aware of how that affects boot times and change your
thresholds accordingly.

• Traffic patterns for your application: If you have predictable traffic
patterns with gradual traffic surges, then a Simple Scaling policy
with 80% CPU utilization thresholds may work well. If your applica-
tion is very spiky and spike durations are brief, then be aware that
you may have to overprovision in order to have enough capacity
when you need it, since any Auto Scaling action takes 2-5 minutes.

11© Logicworks. All rights reserved.

Source: AWS Tutorial

12© Logicworks. All rights reserved.

AMI as their base image. Then at launch, they pass through
custom user-data to configure additional requirements, such as
connecting to a configuration management tool, adding security
agents (i.e. Antivirus and IDS), or adding additional packages.

This is by far the simplest option for bootstrapping, and works
best in cases where customers are managing a relatively small
number of instances (<100). This is because if you’re adding
user-data to an instance, you don’t have a good way of tracking
whether those configurations are working effectively or not. For
example, it’s very easy, for an antivirus agent install to fail and
you’d never know!

Pros:

Simplest option

Fast boot times

Cons:
Instance-by-instance configuration means lack of simple
centralized control & management

If you peruse the AWS Auto Scaling website, you’ll see that AWS
uses the terms “simple” and “easy” five times in the first two
paragraphs. But any cloud administrator knows that a self-
healing, fully scalable system requires significant engineering
investment and experience.

Instance Bootstrapping
When a scale-out event is triggered, you need to supply AWS
with an Amazon Machine Image (AMI) to build the instance.
Maintaining the templates and scripts involved in the auto
scaling process is no mean feat. This AMI can be built in dozens
of different ways, but these methods can usually be categorized
as follows:

Customize Marketplace base AMI
with user-data
Use an AMI from the AWS marketplace, which usually has
minimal modifications to the base operating system. Many of
the companies we work with either use the Amazon Linux 2 AMI,
a Windows Server AMI, or the Amazon ECS or EKS-optimized

Part 3: The Complexities of Auto Scaling

https://aws.amazon.com/autoscaling/

13© Logicworks. All rights reserved.

assigned roles. This can be an issue if you are experiencing load
and need to quickly scale up your infrastructure. The solution
for this is to create snapshot AMIs of already configured
instances, and update your auto scaling groups to use those
AMIs on startup.

Additionally, this process can be automated by using the
AutoAMI Puppet module. This module will watch your Amazon
EBS-backed instances to detect changes made by the Puppet
agent, and automatically create AMIs that can be used to scale
up or replace new instances during autoscale events.

The advantage of using a configuration management tool and
building off of a base or marketplace AMI is obvious: if you are
running 100+ machines, you update packages in a single place
and have a record of every configuration change.

Build Your Own Image Dynamically
Why Immutable Infrastructure?

In reality, how you configure an instance depends on how fast
the instance needs to spin up, how often auto scaling events
happen, the average life of an instance, etc. In an Auto Scaling
event, you often don’t want to have to wait for your configuration

Use a Configuration Management Tool
Configuration management tool scripts can replace the need for
a perfectly baked AMI. Instead, you can create a vanilla template
with the minimum possible configurations that replaces your
individual Golden AMIs for each server role. In this scenario,
your instance userdata or boot script needs only to do what is
necessary to connect to the configuration management
master node.

Tools like Puppet, Chef (or AWS OpsWorks), or Ansible define
everything on the servers from a single location, so there is a
single source of truth about the state of the entire infrastructure.
CloudFormation builds the foundation and installs the Puppet
master, for example, and then Puppet attaches to the resources
the node requires to operate such as Elastic IPs, network inter-
faces, or additional block storage. The final step is integration
between the deploy process and auto scaling, where Puppet
scripts automatically update Amazon EC2 instances newly
added to auto scaling groups (due to instance failure, or
scale events).

One challenge is that it may take upwards of several minutes for
Puppet to run configurations and for the instance to take on its

14© Logicworks. All rights reserved.

Image Baking Tools

The keys to this “immutable infrastructure” process are tools
like Packer or AWS Image Builder (or, to plug our tool,
Logicworks Image Factory!). Packer is a very popular option for
companies who are already using other Hashicorp products, and
AWS Image Builder is a great option if you want a simpler service
that already has hooks into other AWS services.

These dynamic AMI building tools are designed to simplify
the process of building, testing, and versioning AMIs. They
usually provide a GUI for image building, and have hooks into
other popular CI/CD and IaC tools, and are usually one element
of a complex instance creation and code delivery process.
Using this system, the launch template defines a pre-baked AMI

management tool or any script to download and install 500MB
of packages. In addition, the more tasks that the default
installation process must complete, the higher the chance that
something will go wrong.

For instance, say that you update OpenSSL to the latest
version every time your configuration management tool runs.
Even though this happens very rarely, any number of random
network issues could cause temporary outages while connecting
to the package repository. If the initialization process does not
fail elegantly, it could cost a lot of money: the instances keep
dying and being recreated, in an hour it might spin up 30
instances and run up a substantial bill, especially if it is running
large, production instances.

That’s why companies who require the fastest possible Auto
Scaling EC2 instance launch speeds select an “immutable
infrastructure” methodology where they pre-bake AMIs. EC2 Auto
Scaling speed is optimized because no additional configurations
or application installations are needed at launch time. There are
many other reasons why an immutable infrastructure approach
is a great idea – stay tuned for a future eBook on this topic. EC2 Image Builder. Source: AWS Documentation

https://www.packer.io/
https://aws.amazon.com/image-builder/
https://www.logicworks.com/blog/2020/11/iac-ci-cd-pipelines-part-3/

15© Logicworks. All rights reserved.

Windows users know that it can take 5-10 minutes for the
Windows operating system to boot (or longer depending on
application requirements!). This is an obvious issue for Auto
Scaling Windows instances; depending on how frequently you’re
performing health checks, it could be 2-5 minutes before a
scale-out event is triggered, and then an additional 10 minutes
before the Windows instance is ready to receive traffic.
Depending on your application, this could be a minor inconve-
nience or a serious issue.

One way to get around this long boot time is to dynamically
build an AMI that’s already sys-prepped so that when a scale-out
event occurs, the instance comes online quickly. At Logicworks,
we have a large enterprise customer who is currently using this
method to Auto Scale a fleet of hundreds of EC2 instances. The
company’s developers deploy application updates with TeamCity
to QA, then to Production to a “reference” instance. After testing,
the company creates an AMI from this machine and updates
the corresponding Auto Scaling Group with the new AMI ID. The
company leverages AWS SDK for .NET to create the AMI and
update the corresponding Auto Scaling Group. This is a good
solution for companies that have a large number of Auto Scaling
Groups and frequent code updates.

per compute role. For example, the “frontend webserver” role-
specific AMI already will have nginx and the application’s frontend
components installed and will have all O/S configurations (e.g.
opened ports 80 & 443) complete.

Remember: It can take months for an experienced systems
engineer to get comfortable working with image building,
perfecting the scale conditions, and integrating it with existing
instance launch pipelines. This is time that small engineering
teams usually do not have, which is why many teams never
reach the point of true auto scaling and instead rely on some
combination of elastic load balancing and manual configuration.
Allocating internal or external resources to create template-driven
environments can decrease your buildout time by several orders
of magnitude. This is why many IT firms devote an entire team of
engineers to maintaining automation scripts, or leverage a partner
like Logicworks.

Windows Auto Scaling
In addition to instance bootstrapping, another common complexity
of Auto Scaling is Windows operating systems.

http://www.logicworks.com

16© Logicworks. All rights reserved.

minutes. Whether that traffic is legitimate or not, their website
and application goes down.

Why does their website go down if they have auto scaling? There
are a number of factors. First, their auto scaling group can only
add instances every five minutes by default, and it can take 3-5
minutes for a new instance to be in service. Obviously, their extra
capacity will be too late to meet their 10 A.M. spike. Because
they do not have enough instances to handle the load, it not only
triggers the creation of (non-helpful) extra instances, but the
existing two servers are so overloaded that the health checks
running on those instances start to slow down. When the Elastic
Load Balancers see that the health check is not working, it
drops the instance. This makes the problem worse and further
increases load.

AWS also launched a service called Warm Pools, that allows you
to launch and prep instances and then put them in a Stopped
state until they’re needed. The disadvantage of this system is
that it’s relatively complex to setup and troubleshoot, and you’re
still paying for attached storage on stopped instances.

Spiky Applications
A common misconception about load-based auto scaling is
that it is appropriate in every environment. In fact, some cloud
deployments will be more resilient without auto scaling or on a
limited basis. This is especially true for companies that have less
than 50 instances, where closely matching capacity and demand
has some unexpected consequences.

Let’s say a startup has a traffic peak at 5:00 P.M. That traffic
peak requires twelve Amazon EC2 instances, but for the most
part they can get by with just two EC2 instances. They decide
that in order to save costs and take advantage of their cloud’s
auto scaling feature, they will put their instances in an auto
scaling group with a maximum size of fifteen and a minimum
size of two.

However, one day they get a huge peak of traffic around 10 A.M.,
that is as high as their 5:00 P.M. traffic — but it only lasts for 3

https://aws.amazon.com/blogs/compute/scaling-your-applications-faster-with-ec2-auto-scaling-warm-pools/

17© Logicworks. All rights reserved.

servers. If you let your capacity fall below a certain amount, you
are always going to be susceptible to downtime. No matter how
the auto scaling group is set up, it still takes at least 5 minutes
for an instance to come up; in 5 minutes, you can generate a lot
of traffic, and in 10 minutes you can saturate a website. This is
why a 90% scale down is almost always too much. In the above
example, the startup should instead try to scale the top 20% of
their capacity.

In an ideal world, demand increases slowly and predictably. But
sometimes big jumps happen over minutes, not days, and Auto
Scaling doesn’t always keep up. If this happens regularly, it would
be wise to reexamine whether scaling down to two instances is
a good idea. Even though the startup is saving money by scaling
down to match capacity and demand, they are always at the risk
of downtime.

In fact, it is generally true that auto scaling is most useful to
those who are scaling to hundreds of servers rather than tens of

Summary
When AWS launched Auto Scaling in 2006, the industry proclaimed that the days of overprovisioning servers and capacity planning were
over. After all, Auto Scaling embodies the full potential of the public cloud: to “pay for what you need and use, and not a byte more”.

But as any experienced AWS user knows, Amazon EC2 Auto Scaling is complex. To create an automated, self-healing architecture that
replaces failed instances and scales out with little or no human intervention requires a significant time investment upfront.

At Logicworks, we’ve spent the last 10 years perfecting our Auto Scaling principles – and every project is different, so we’re continually
learning, adapting, and innovating. If you have questions about your Auto Scaling practices, or want to conduct a Well-Architected Review
with Logicworks, contact us.

https://www.logicworks.com/contact-us/

18© Logicworks. All rights reserved.

About Logicworks
Logicworks is a leading provider of AWS migration and managed

services. As an AWS Premier Consulting Partner, we have helped

hundreds of companies architect, migrate, and manage custom

AWS environments. We specialize in complex, highly regulated

workloads for healthcare, finance, and retail and have earned HIPAA,

HITRUST, PCI-DSS, SOC1, SOC2, and ISO 27001 certification.

Learn more about Logicworks at www.logicworks.com.

“Given our business model of providing

real-time data and analytics, the

reliability of our platform is paramount.

I cannot stress enough the role

Logicworks plays in our effort to service

our customers. They’re more than a

strategic partner, they’re mission-critical.”

Govi Rau, CEO
 Noveda

http://www.logicworks.com

